/ 98 06 19 0 v 1 2 3 Ju n 19 98 Time exponentiation of a Wilson loop for Yang - Mills theories in 2 + ǫ dimensions

نویسنده

  • A. Bassetto
چکیده

A rectangular Wilson loop centered at the origin, with sides parallel to space and time directions and length 2L and 2T respectively, is perturbatively evaluated O(g4) in Feynman gauge for Yang–Mills theory in 1+(D−1) dimensions. When D > 2, there is a dependence on the dimensionless ratio L/T , besides the area. In the limit T → ∞, keeping D > 2, the leading expression of the loop involves only the Casimir constant CF of the fundamental representation and is thereby in agreement with the expected Abelian-like time exponentiation (ALTE). At D = 2 the result depends also on CA, the Casimir constant of the adjoint representation and a pure area law behavior is recovered, but no agreement with ALTE in the limit T → ∞. Consequences of these results concerning two and higher-dimensional gauge theories are pointed out. Padova preprint DFPD 98/TH/32; PACS: 11.10 Kk, 12.38 Bx keywords: Perturbative Wilson loop calculation; QCD in lower dimensions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

/ 98 06 03 7 v 1 4 J un 1 99 8 Two - dimensional QCD , instanton contributions and the perturbative Wu - Mandelstam - Leibbrandt prescription

The exact Wilson loop expression for the pure Yang-Mills U (N) theory on a sphere S 2 of radius R exhibits, in the decompactification limit R → ∞, the expected pure area exponentiation. This behaviour can be understood as due to the sum over all instanton sectors. If only the zero instanton sector is considered, in the decompactification limit one exactly recovers the sum of the perturbative se...

متن کامل

ep - t h / 99 06 12 5 v 1 1 6 Ju n 19 99 Instanton contributions to Wilson loops with general winding number in two dimensions and the spectral density

The exact expression for Wilson loop averages winding n times on a closed contour is obtained in two dimensions for pure U (N) Yang-Mills theory and, rather surprisingly, it displays an interesting duality in the exchange n ↔ N. The large-N limit of our result is consistent with previous computations. Moreover we discuss the limit of small loop area A, keeping n 2 A fixed, and find it coincides...

متن کامل

06 1 v 1 8 A pr 1 99 9 Discontinuous behaviour of perturbative Yang - Mills theories in the limit of dimensions D →

We calculate in dimensions D = 2+ǫ and in light-cone gauge (LCG) the perturbative O(g4) contribution to a rectangular Wilson loop in the (t, x)-plane coming from diagrams with a self-energy correction in the vector propagator. In the limit ǫ → 0 the result is finite, in spite of the vanishing of the triple vector vertex in LCG, and provides the expected agreement with the analogous calculation ...

متن کامل

ar X iv : h ep - t h / 02 10 09 1 v 3 2 9 M ay

String solitons in AdS 5 contain information of N = 4 SUSY Yang-Mills theories on the boundary. Recent proposals for rotating string solitons reproduce the spectrum for anomalous dimensions of Wilson operators for the boundary theory. There are possible extensions of this duality for lower supersymmetric and even for non-supesymmetric Yang-Mills theories. We explicitly demonstrate that the supe...

متن کامل

06 03 7 v 3 8 J un 1 99 8 Two - dimensional QCD , instanton contributions and the perturbative Wu - Mandelstam - Leibbrandt prescription

The exact Wilson loop expression for the pure Yang-Mills U (N) theory on a sphere S 2 of radius R exhibits, in the decompactification limit R → ∞, the expected pure area exponentiation. This behaviour can be understood as due to the sum over all instanton sectors. If only the zero instanton sector is considered, in the decompactification limit one exactly recovers the sum of the perturbative se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008